已知函数f(x)=log2(a-2x)+x-2,若f(x)存在零点,则实数a的取值范围是( ) A.(-∞,-4]∪[4,+∞) B.[1,+∞) C.[2,+∞) D.[4,+∞)
题目
已知函数f(x)=log2(a-2x)+x-2,若f(x)存在零点,则实数a的取值范围是( )
A. (-∞,-4]∪[4,+∞)
B. [1,+∞)
C. [2,+∞)
D. [4,+∞)
答案
若f(x)存在零点,
则方程log
2(a-2
x)=2-x有根
即2
2-x=a-2
x有根,
令2
x=t(t>0)
则原方程等价于
=a-t有正根
即t
2-at+4=0有正根,
根据根与系数的关系t
1t
2=4>0,
即若方程有正根,必有两正根,
故有
∴a≥4.
故选D
根据函数零点与对应方程根之间的关系,我们可将f(x)存在零点转化为方程log2(a-2x)=2-x有根,结合对数方程和指数方程的解法,我们可将他转化为一个二次方程根的存在性总是,再根据二次方程根的个数与△的关系及韦达定理,我们易构造一个关于a的不等式,解不等式即可求出实数a的取值范围.
函数零点的判定定理.
本题考查的知识点是函数零点的判定定理,其中根据指数方程和对数方程的解法,将函数对应的方程转化为一个二次方程是解答的关键.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点