f(x)=2Sin(wx+φ-π/6)=2Coswx 又函数y=f(x)图像的两相邻对称轴的距离为π/2,w>0 可知其周期为π 故w=2

f(x)=2Sin(wx+φ-π/6)=2Coswx 又函数y=f(x)图像的两相邻对称轴的距离为π/2,w>0 可知其周期为π 故w=2

题目
f(x)=2Sin(wx+φ-π/6)=2Coswx 又函数y=f(x)图像的两相邻对称轴的距离为π/2,w>0 可知其周期为π 故w=2
这个w是怎么得到的过程
答案
f(x)=2Sin(wx+φ-π/6)=2Coswx 函数y=f(x)图像的两相邻对称轴的距离为π/2
可知周期为π
由T=2π/w得到w=2 (w为角速度,T为周期,一周为2π,则有T=2π/w
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.