三角函数 (16 10:55:7)

三角函数 (16 10:55:7)

题目
三角函数 (16 10:55:7)
                            三角形的三边a b c和面积满足S等于c平方减去(a-b)的平方,且a加b等于2,求面积s的最大值
答案
面积公式:S=1/2ab*sinC
和余弦定理
如下:
S=(absinC)/2
c^2-(a-b)^2=c^2-a^2-b^2+2ab=2ab(1-cosC)
得sinC=4(1-cosC),两边平方后
1-(cosC)^2=16(1-cosC)^2
(1-cosC)(15+17cosC)=0
cosC=-15/17 (cosC=1时C=0,舍去)
sinC=8/17
由a+b≥2根号(ab)得ab≤1
S最大值为S=(absinC)/2≤4/17
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.