设AB是N阶矩阵 证明AB BA行列式 =A+B行列式乘以 A-B行列式 要用到分块矩阵以及那个公式
题目
设AB是N阶矩阵 证明AB BA行列式 =A+B行列式乘以 A-B行列式 要用到分块矩阵以及那个公式
答案
验证(E E *(A B *(E -E
0 E) B A) 0 E)
=(A+B 0
B A-B),
其中E是N阶单位阵.等式两边取行列式,并注意到等式
右边矩阵的行列式为|A+B|*|A-B|可知结论成立.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点