阅读下面的材料:在平面几何中,我们学过两条直线平行的定义.下面就两个一次函数的图象所确定的两条直线,给出它们平行的定义:设一次函数y=k1x+b1(k1≠0)的图象为直线l1,一次函数
题目
阅读下面的材料:在平面几何中,我们学过两条直线平行的定义.下面就两个一次函数的图象所确定的两条直线,给出它们平行的定义:设一次函数y=k
1x+b
1(k
1≠0)的图象为直线l
1,一次函数y=k
2x+b
2(k
2≠0)的图象为直线l
2,若k
1=k
2,且b
1≠b
2,
我们就称直线l
1与直线l
2互相平行.解答下面的问题:
(1)求过点P(1,4)且与已知直线y=-2x-1平行的直线l的函数表达式,并画出直线l的图象;
(2)设直线l分别与y轴、x轴交于点A、B,如果直线m:y=kx+t(t>0)与直线l平行且交x轴于点C,求出△ABC的面积S关于t的函数表达式.
答案
(1)设直线l的函数表达式为y=kx+b,
∵直线l与直线y=-2x-1平行,∴k=-2,
∵直线l过点(1,4),
∴-2+b=4,
∴b=6.
∴直线l的函数表达式为y=-2x+6.
直线l的图象如图.
(2)∵直线l分别与y轴、x轴交于点A、B,
∴点A、B的坐标分别为(0,6)、(3,0).
∵l∥m,
∴直线m为y=-2x+t.令y=0,解得x=
,
∴C点的坐标为(
,0).
∵t>0,∴
>0.
∴C点在x轴的正半轴上.
当C点在B点的左侧时,S=
×(3-
)×6=9-
;
当C点在B点的右侧时,S=
×(
-3)×6=
-9.
∴△ABC的面积S关于t的函数表达式为S=
.
(1)直线l与已知直线y=-2x-1平行,因而直线的一次项系数是-2,根据待定系数法就可以求出函数解析式.
(2)点A、B的坐标可以求出,点C的位置应分在B点的左侧和右侧两种情况进行讨论.根据三角形的面积就可以求出C点的坐标.
一次函数综合题.
本题主要考查了待定系数法求函数的解析式,以及函数平行的条件,是需要熟记的内容.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点