已知△ABC的外接圆半径为R,且满足2R[(sinA)^2-(sinC)^2]=(√2a-b)sinB,求△ABC面积的最大值
题目
已知△ABC的外接圆半径为R,且满足2R[(sinA)^2-(sinC)^2]=(√2a-b)sinB,求△ABC面积的最大值
明天就要交作业了,(ˇˍˇ)
答案
2R[(sinA)^2-(sinC)^2]=(√2a-b)sinB;两边同乘以2R得:[(2RsinA)^2-(2RsinC)^2]=(√2a-b)2RsinB
a^2-c^2=b(√2a-b); a^-c^2=√2ab-b^2; a^2+b^2-c^2=√2ab;
由余弦定理:cosC=(a^2+b^2-c^2)/(2ab)=√2ab/(2ab)=√2/2; 0
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点