正数x,y满足x+2y=1则1/x+1/y的最小值为?
题目
正数x,y满足x+2y=1则1/x+1/y的最小值为?
详解.
答案是3+2√2
答案
不是你提醒,错了还不知道.重新来
1/x+1/y
=1*(1/x+1/y)
=(x+2y)(1/x+1/y)
=1+2+2y/x+x/y
=3+2y/x+x/y
[平均值不等式]
>=3+2√(2y/x*x/y)
=3+2√2
取等号时2y/x=x/y x=√2y
代入x+2y=1解得x=√2-1 y=(2-√2)/2
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点