如图,已知△ABC中,∠BAC=120°,P为△ABC内一点. 求证:PA+PB+PC>AB+AC.

如图,已知△ABC中,∠BAC=120°,P为△ABC内一点. 求证:PA+PB+PC>AB+AC.

题目
如图,已知△ABC中,∠BAC=120°,P为△ABC内一点.
求证:PA+PB+PC>AB+AC.
答案
把△APC绕A逆时针旋转60°得到△AP′C′,如图
∴∠CAC′=∠PAP′=60°,AC=AC′,AP=AP′,PC=P′C′,
∴△APP′为等边三角形,
∴PP′=AP,
∵∠BAC=120°,
∴∠BAC′=120°+60°=180°,
即B,A,C′共线,
∴BC′<BP+PP′+P′C,
即AB+AC<AP+BP+CP.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.