数列{an}中前n项和为sn且a1=2,snsn-1=an,求an

数列{an}中前n项和为sn且a1=2,snsn-1=an,求an

题目
数列{an}中前n项和为sn且a1=2,snsn-1=an,求an
答案
当n≥2时,SnS(n-1)=an,而an=Sn-S(n-1)
所以SnS(n-1)=Sn-S(n-1)
则:1=1/S(n-1)-1/Sn,即1/Sn-1/S(n-1)=-1
当n=1时S1=a1=2,所以1/S1=1/2
所以数列{1/Sn}是以1/2为首项、-1为公差的等差数列
则:1/Sn=1/2+(-1)*(n-1)=3/2-n=(3-2n)/2
则:Sn=2/(3-2n),S(n-1)=2/(5-2n)
所以当n≥2时,an=SnS(n-1)=2/(3-2n)×2/(5-2n)=4/[(3-2n)(5-2n)]
当n=1时,a1=4/1*3≠2,不满足此式
所以an的通项公式为:
当n=1时,a1=2;
当n≥2时,an=4/[(3-2n)(5-2n)] (n∈N+)
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.