如果实数x,y满足x^2+y^2+4x+3=0求x-y的最大值和最小值
题目
如果实数x,y满足x^2+y^2+4x+3=0求x-y的最大值和最小值
求详解,(急用!)
上边的打错了,是y-x
答案
答:
x^2+y^2+4x+3=0
(x^2+4x+4)+y^2=1
(x+2)^2+y^2=1
圆心为(-2,0),半径R=1
设y-x=k,x-y+k=0
直线与圆有交点,则圆心到直线的距离不大于R
所以:
d=|-2-0+k|/√(1^2+1^2)<=R=1
所以:
|k-2|<=√2
-√2<=k-2<=√2
2-√2<=k<=2+√2
所以:y-x的最大值为2+√2,最小值为2-√2
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点