对 ∫下限0上限x [t f(x^2-t^2)] dt求导
题目
对 ∫下限0上限x [t f(x^2-t^2)] dt求导
答案
y=x^2-t^2
t--->0时,y--->x^2
t--->x时,y--->0
F(x)= ∫下限0上限x [t f(x^2-t^2)] dt
= ∫下限0上限x [-1/2 f(x^2-t^2)] d(x^2-t^2)
=1/2* ∫下限0上限x ^2[f(y)] dy
F'(x)=1/2*f(x^2)*2x=xf(x^2)
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点