设a>0,b>0,求证(x+a)2(x-b)+x2=0有一个正根,两个负根 (高数 零点定理与介值定理)

设a>0,b>0,求证(x+a)2(x-b)+x2=0有一个正根,两个负根 (高数 零点定理与介值定理)

题目
设a>0,b>0,求证(x+a)2(x-b)+x2=0有一个正根,两个负根 (高数 零点定理与介值定理)
答案
记:f(x)=[(x+a)^2](x-b)+x^2
知:f(x) 为三次函数,在整个数轴上连续.且至多有三个零点.
f(0)= -(a^2)b 0,
f(b) = b^2 >0
x 趋向-∞ f(x)趋向-∞,
按次序排列:
-∞ -a,0 ,b ,
由介值定理,知:f(x) 在(-∞ ,-a),(-a,0) 内 ,分别至少有一个负零点,
在(0 ,b) ,内,至少有一个正零点.
由于f(x)至多有三个实零点,即推出:
f(x) 在(-∞ ,-a),(-a,0) 内 ,分别有唯一一个负零点,
在(0 ,b) ,内,有唯一一个正零点.
即证明了:方程:[(x+a)^2](x-b)+x^2=0有一个正根,两个负根
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.