已知函数f(x)=-x2+2ex+m-1,g(x)=x+e2x (x>0). (1)若g(x)=m有实根,求m的取值范围; (2)确定m的取值范围,使得g(x)-f(x)=0有两个相异实根.

已知函数f(x)=-x2+2ex+m-1,g(x)=x+e2x (x>0). (1)若g(x)=m有实根,求m的取值范围; (2)确定m的取值范围,使得g(x)-f(x)=0有两个相异实根.

题目
已知函数f(x)=-x2+2ex+m-1,g(x)=x+
e2
x
 (x>0).
(1)若g(x)=m有实根,求m的取值范围;
(2)确定m的取值范围,使得g(x)-f(x)=0有两个相异实根.
答案
(1)方法一:∵g(x)=x+
e2
x
≥2e,等号成立的条件是x=e.
故g(x)的值域是[2e,+∞),
因而只需m≥2e,则g(x)=m就有实根.
故m的取值范围是{m|m≥2e}.
方法二:作出g(x)=x+
e2
x
 (x>0)的图象如图:
观察图象,知:若使g(x)=m有实根,则只需m≥2e,故m的取值范围是{m|m≥2e}.
方法三:解方程由g(x)=m,得x2-mx+e2=0,此方程有大于零的根,
m
2
>0
△=m2−4e2≥0
,等价于
m>0
m≥2e或m≤−2e
,故m≥2e.
故m的取值范围是{m|m≥2e}.
(2)若g(x)-f(x)=0有两个相异的实根,即g(x)=f(x)中,函数g(x)与f(x)的图象有两个不同的交点,作出g(x)=x+
e2
x
(x>0)的图象,
∵f(x)=-x2+2ex+m-1=-(x-e)2+m-1+e2
其对称轴为x=e,开口向下,最大值为m-1+e2
故当m-1+e2>2e,即m>-e2+2e+1时,g(x)与f(x)的图象有两个不同的交点,即g(x)-f(x)=0有两个相异的实根,∴m的取值范围是:(-e2+2e+1,+∞).
(1)方法一:g(x)=x+
e2
x
≥2e,等号成立的条件是x=e.故g(x)的值域是[2e,+∞),由此能求出m的取值范围.
方法二:作出g(x)=x+
e2
x
 (x>0)的图象如图:观察图象,能求出m的取值范围.
方法三:解方程由g(x)=m,得x2-mx+e2=0.此方程有大于零的根,故
m
2
>0
△=m2−4e2≥0
,由此能求出m的取值范围.
(2)若g(x)-f(x)=0有两个相异的实根,即g(x)=f(x)中,函数g(x)与f(x)的图象有两个不同的交点,作出g(x)=x+
e2
x
(x>0)的图象,由f(x)=-x2+2ex+m-1,知最大值为m-1+e2,故当m>-e2+2e+1时,g(x)与f(x)的图象有两个不同的交点.

利用导数研究函数的单调性;二次函数的性质;根的存在性及根的个数判断.

本题考查实数取值范围的求法,解题时要认真审题,注意合理地进行等价转化.灵活运用导数的性质、函数图象进行求解.

举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.