证明数列极限√n∧2 a∧2÷n=1

证明数列极限√n∧2 a∧2÷n=1

题目
证明数列极限√n∧2 a∧2÷n=1
答案
对任意的正数b〉0,
有|√n∧2+ a∧2÷n-1|=a2/[n(√n∧2+ a∧2-n)]〈a2/n
要使a2/n〈b,只需n〉a2/b,
令N=[a2/b]+1,则当n〉N时有|√n∧2+ a∧2÷n-1|<b
由数列极限定义得√n∧2+ a∧2÷n=1(n趋近于无穷)  
望采纳      
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.