A为3阶矩阵,a1,a2,a3为3维列向量组,(Aa1,Aa2,Aa3)为什么根据分块矩阵乘法可分为A(a1,a2,a3)?
题目
A为3阶矩阵,a1,a2,a3为3维列向量组,(Aa1,Aa2,Aa3)为什么根据分块矩阵乘法可分为A(a1,a2,a3)?
答案
A(a1,a2,a3) 【A(1×1),(a1,a2,a3)(1×3),符合矩阵乘法法则】
=(A*a1,A*a2,A*a3)
=(Aa1,Aa2,Aa3)
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点