如图,PA⊥平面ABC,AE⊥PB,AB⊥BC,AF⊥PC,PA=AB=BC=2 (1)求证:平面AEF⊥平面PBC;(2)求二面角P-BC-A的大小;(3)求三棱锥P-AEF的体积.

如图,PA⊥平面ABC,AE⊥PB,AB⊥BC,AF⊥PC,PA=AB=BC=2 (1)求证:平面AEF⊥平面PBC;(2)求二面角P-BC-A的大小;(3)求三棱锥P-AEF的体积.

题目
如图,PA⊥平面ABC,AE⊥PB,AB⊥BC,AF⊥PC,PA=AB=BC=2
作业帮
(1)求证:平面AEF⊥平面PBC;
(2)求二面角P-BC-A的大小;
(3)求三棱锥P-AEF的体积.
答案
(1)∵PA⊥平面ABC,BC⊂平面ABC,∴PA⊥BC,作业帮
∵AB⊥BC,PA∩AB=A,∴BC⊥平面PAB,
∵AE⊂平面PAB,∴AE⊥BC,
∵AE⊥PB,PB∩BC=B,∴AE⊥平面PBC,
∵AE⊂平面AEF,∴平面AEF⊥平面PBC;
(2)∵BC⊥平面PAB,PB⊂平面PAB,∴BC⊥PB,
结合AB⊥BC,可得∠PBA是二面角P-BC-A的平面角,
∵Rt△PAB中,PA=AB=2,∴∠PBA=45°,
由此可得二面角P-BC-A的大小为45°;
(3)由(1)AE⊥平面PBC
又∵AF⊥PC
∴EF⊥PC(三垂线定理逆定理)
∴△PEF∽△PCB
∴=
S△PEF
S△PBC
=
PE2
PC2
=
1
6
,∴S△PEF=
1
6
S△PBC=
2
3

∴VP-AEF=VA-PEF=
1
3
×
2
×
2
3
=
2
9
(1)由线面垂直的定义,根据PA⊥平面ABC得PA⊥BC,结合AB⊥BC得BC⊥平面PAB,从而得出AE⊥BC,结合AE⊥PB证出AE⊥平面PBC,最后根据面面垂直判定定理,即可证出平面AEF⊥平面PBC;
(2)由(1)的结论得BC⊥AB且BC⊥PB,所以∠PBA是二面角P-BC-A的平面角,Rt△PAB中算出∠PBA=45°,即可得到二面角P-BC-A的大小;
(3)由PA⊥平面ABC,得PA是三棱锥P-AEF的高,算出△ABC的面积再利用锥体的体积公式加以计算,即可得到三棱锥P-AEF的体积.

二面角的平面角及求法;棱柱、棱锥、棱台的体积;平面与平面垂直的判定.

本题在特殊三棱锥中证明面面垂直,并求二面角的大小和锥体的体积.着重考查了空间垂直位置关系的判断与证明和锥体的体积计算等知识,属于中档题.

举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.