数列{an}满足an=3an-1+3^n-1,(n≥2),a4=365,若存在一个实数λ,使得{(an+λ)/3^n}为等差数列,求λ的值

数列{an}满足an=3an-1+3^n-1,(n≥2),a4=365,若存在一个实数λ,使得{(an+λ)/3^n}为等差数列,求λ的值

题目
数列{an}满足an=3an-1+3^n-1,(n≥2),a4=365,若存在一个实数λ,使得{(an+λ)/3^n}为等差数列,求λ的值
答案
要使其为等差数列
则bn-b(n-1)为一个常数
bn-b(n-1)
=(an+λ)/3^n-[a(n-1)+λ]/3^(n-1)
把an=3a(n-1)+3^n-1代入
得:bn-b(n-1)=1-(1+2λ)/3^n
λ是实数,不能是关于n的代数式
∴1+2λ=0
∴λ=-1/2
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.