函数y=log1/2cos(π/3-x/2)的单调增区间
题目
函数y=log1/2cos(π/3-x/2)的单调增区间
答案
y=log1/2[cos(π/3-x/2)]的底数为1/2
所以外函数为减
所以当cos(π/3-x/2)为减时
y递增
先考虑定义域
cos(π/3-x/2)>0
解得
x∈[-π/3-4kπ,5π/3-4kπ] k∈Z
而cos(π/3-x/2)的减区间为
2kπ
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点