反证法:假设p和q是两个奇整数,证明方程x^2+2px+2q=0不可能有有理数根.

反证法:假设p和q是两个奇整数,证明方程x^2+2px+2q=0不可能有有理数根.

题目
反证法:假设p和q是两个奇整数,证明方程x^2+2px+2q=0不可能有有理数根.
答案
假设两根为m,n,则必为整数
当m,n同为奇数时,mn为奇数.与mn=2q矛盾
当m,n同为偶数时,mn为4的倍数.与mn=2q矛盾
当m,n为一奇数,一偶数时,m+n为奇数.与m+n=2p矛盾
所以:方程x^2+2px+2q=0不可能有有理数根.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.