已知关于x的方程kx=4-x的解为正整数,求k所能取得的整数值.
题目
已知关于x的方程kx=4-x的解为正整数,求k所能取得的整数值.
答案
将原方程变形得kx+x=4即(k+1)x=4,
∵关于x的方程kx=4-x的解为正整数,
∴k+1也为正整数且与x的乘积为4,
可得到k+1=4或k+1=2或k+1=1,
解得k=3或k=1或k=0.
故k可以取得的整数解为0、1、3.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点