如图,Rt△ABC中,∠ACB=90°,CD⊥AB于D,AF平分∠CAB交CD于E,交CB于F,且EG∥AB交CB于G,则CF与GB的大小关系是(  ) A.CF>GB B.GB=CF C.CF<GB

如图,Rt△ABC中,∠ACB=90°,CD⊥AB于D,AF平分∠CAB交CD于E,交CB于F,且EG∥AB交CB于G,则CF与GB的大小关系是(  ) A.CF>GB B.GB=CF C.CF<GB

题目
如图,Rt△ABC中,∠ACB=90°,CD⊥AB于D,AF平分∠CAB交CD于E,交CB于F,且EG∥AB交CB于G,则CF与GB的大小关系是(  )
A. CF>GB
B. GB=CF
C. CF<GB
D. 无法确定
答案
过F做FH⊥AB且交于点H,连接EH,
在△ACF与△AHF中
∵AF平分∠CAB交CD于E⇒
CF=HF
∠CAF=∠HAF

又∵AF=AF,
∴△ACF≌△AHF,
∴AC=AH,
同理在△ACE与△AHE中,△ACE≌△AHE,
可知CE=EH,∠ACE=∠AHE,
在Rt△ACD中,∠CAD+∠ACD=90°,
在Rt△ABC中,∠CAB+∠B=90°,
又∵∠CAD与∠CAB为同一角,
∴∠ACD=∠B,
∴∠AHE=∠B,
∴EH∥BC,
∵CD⊥AB,FH⊥AB,
∴CD∥FH,
∴四边形CEHF为菱形,四边形EGBH为平行四边形,
∴CF=EH,EH=GB,
∴CF=GB.
故选B.
用观察和作图的方法可以猜测CF=GB.下面只要证明CF=GB即可.由条件∠ACB=90°,AF平分∠CAB,想到FH⊥AB,垂足为H,连接EH,易证菱形CEHF,平行四边形EHBG,故有CF=EH=GB,从而得证.要证明菱形CEHF,只需证明两对边平行,临边相等,根据菱形的定义即可证明.要证平行四边形EHBG,两对边平行即可.关于证明EH∥BC,只需证明∠AHE=∠B,通过在Rt△ACD与Rt△ACD中,证明∠ACD=∠B、∠AHE=∠ACD即可得.

全等三角形的判定与性质;角平分线的性质;菱形的判定与性质.

本题考查全等三角形的性质与判定、角平分线的性质与判定、菱形的性质与判定、直角三角形的性质.难点在于恰当添加辅助线FH、EH,根据题意证明菱形CEHF,平行四边形EHBG.此类题学生丢分率较高,需注意.

举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.