如果是奇函数,且在0处有定义,则一定有f(x)=0?为什么

如果是奇函数,且在0处有定义,则一定有f(x)=0?为什么

题目
如果是奇函数,且在0处有定义,则一定有f(x)=0?为什么
如题
答案
分析:既然是奇函数,就有f(-x)=-f(x),有∵在0处有定义,则f(-0)=-f(0),0是不分正负的,∴f(-0)=f(0)=-f(0),将f(0)看做数X,则X=-X,一个正数=一个负数,那么这个数就只能是0了.
证明:∵f(x)=0为奇函数,且在x=0处有定义
∴f(-x)=-f(x),f(-0)=-f(0)
∵-0=0
则f(-0)=f(0)=-f(0)=0
原题可证
例举:一次函数f(x)=ax为奇函数,且在x=0处有定义,f(-0)=-f(0)=0
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.