设α1,α2,…,αn是一组n维向量,已知n维单位坐标向量e1,e2,…,en能由它们线性表示,证明:α1,α2,…,αn线性无关.

设α1,α2,…,αn是一组n维向量,已知n维单位坐标向量e1,e2,…,en能由它们线性表示,证明:α1,α2,…,αn线性无关.

题目
答案
证明:由于任意一组n维向量都可以由n维单位向量组线性表示,即
α1,α2,…,αn能由n维单位坐标向量e1,e2,…,en线性表示
而已知“n维单位坐标向量e1,e2,…,en能由α1,α2,…,αn线性表示”
∴α1,α2,…,αn是与n维单位坐标向量e1,e2,…,en等价的
∴r(α1,α2,…,αn)=r(e1,e2,…,en)=n
∴α1,α2,…,αn线性无关.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.