证明:如果四边形两条对角线垂直且相等,那么依次连接他的四边中点得到一个正方形.

证明:如果四边形两条对角线垂直且相等,那么依次连接他的四边中点得到一个正方形.

题目
证明:如果四边形两条对角线垂直且相等,那么依次连接他的四边中点得到一个正方形.
写"已知,求证,证明"三个内容.
答案
先画个图,左上方为A点,右上方为B点,右下方为C点,左下方为D点,得四边形ABCD,取AB的中点E,BC的中点F,CD的中点G,AD的中点H,连接E、F、G、H,得四边形EFGH.(有点麻烦,为的是让你的图和我的一样)
连接A、C和B、D,AC、BD交于点O.BD交EF于点M.
∵E、F为线段AB、BC的中点
∴EF‖AC EF=1/2AC
同理:FG=1/2BD GH=1/2AC EH=1/2BD EH‖BD(不需要的结论我都没写)
∴EF=FG=GH=EH
∴四边形EFGH是菱形
∵AC⊥BD
∴∠AOB=90°
∵EF‖AC
∴∠BME=90°
∵EH‖BD
∴∠FEH=90°
∴菱形EFGH是正方形
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.