在椭圆x^2+4y^2=4上求一点,使其到平面2x+3y-6=0的距离最短

在椭圆x^2+4y^2=4上求一点,使其到平面2x+3y-6=0的距离最短

题目
在椭圆x^2+4y^2=4上求一点,使其到平面2x+3y-6=0的距离最短
答案
思路:
1.设一条直线为Ax+By+c=0( 这条直线的斜率与题目中直线的斜率一样,因为只有斜率一样,直线才会平行,进而谈论距离问题,不平行的两条直线是没有距离的)
2.联立Ax+By+c=0和椭圆方程,得到二次函数的判别式,既△=0(直线与椭圆相切),求出c,这样就有可以求得两条直线的距离,有最大距离也有最小距离.
3.如果求最大值时的坐标,再利用△=0,就出最大值的坐标和最小值的坐标.
补充:一般在圆锥曲线中求与一条直线的最大距离或者最小距离,方法就是我上面所说的,要设与已知直线平行的直线,再利用直线与图形相切,求出未知数.
直线所在的平面不就是椭圆所在的平面吗,再说了,直线和椭圆不都是在直角坐标系里了吗?还考虑平面吗?
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.