证明不等式:(根号x-根号y)(x-y)≥0(其中x,y皆为正数)
题目
证明不等式:(根号x-根号y)(x-y)≥0(其中x,y皆为正数)
答案
证明:(√x-√y)(x-y)=(√x-√y)(√x-√y)(√x+√y)=(√x-√y)^2(√x+√y)
因为x,y皆为正数,所以(√x-√y)≥0,(√x+√y)>0
故(√x-√y)^2(√x+√y)≥0
证毕
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点