求证(ln x)/(x+1)+1/x > (ln x)/(x-1)恒成立
题目
求证(ln x)/(x+1)+1/x > (ln x)/(x-1)恒成立
答案
f(x)=(ln x)/(x+1)+1/x - (ln x)/(x-1)
求导:可得 f‘(x)在(0,1)小于零,在(1,)大于零
所以 f(x)在 f‘(x)在(0,1),为递减的函数
在(1,)为递增的函数.
又f(x)在趋近于零时,有f(x)>0 *(x定义域(0,1)(1,))
所以f(x)恒大于零.
即原式成立.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点