设数列{an}满足a1=2,an+1=an+(1/an),(n=1,2,3…).(1)证明:an>(2n+1)1/2(根号)对一切正整数n都成立
题目
设数列{an}满足a1=2,an+1=an+(1/an),(n=1,2,3…).(1)证明:an>(2n+1)1/2(根号)对一切正整数n都成立
答案
用数学归纳法证明,当n=1时,a1=2>√(2*1+1)=√3,成立;当n=2时,a2=2+1/2=5/2>√(2*2+1)=√5,成立;设n=k时,原式成立,ak>√(2k+1),(ak)²>2k+1,∵a(k+1)=ak+1/(ak),∴ak*a(k+1)=(ak)²+1,∵ak>0,且ak≠a(k+1),...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点