证明直角三角形斜边的中点,到三个顶点的距离相等
题目
证明直角三角形斜边的中点,到三个顶点的距离相等
答案
》
可以通过作外接圆来证明.
因为该三角形是直角三角形,
所以该直角三角形的斜边
就是它的外接圆的一条直径.
而根据已知条件,
斜边的中点就是这个外接圆的圆心.
因此连接斜边的中点和直角的顶点
这条线就是这个圆的一条半径,
——自然就等于直径的一半啦!
——也就等于直角三角形斜边的一半啦!
——那就是说直角三角形斜边的中点到三个顶点的距离相等嘛!
《
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点