f(x),定义域为R,且x不恒为0 f(m)f(n)=mf(n/2)+nf(m/2)成立.求所有满足条件的函数f(x).
题目
f(x),定义域为R,且x不恒为0 f(m)f(n)=mf(n/2)+nf(m/2)成立.求所有满足条件的函数f(x).
答案
原式两边同时处以mn(m、n不为零)得 f(m)f(n)/(mn)=f(n/2)/n+nf(m/2)/m;
令g(x)=f(x)/x (x不为零),则有2g(m)g(n)=g(m/2)+g(n/2),
令m=n,得g(m/2)=[g(m)]^2>=0对任意m不为零都成立,
再将g(m/2)=[g(m)]^2、g(n/2)=[g(n)]^2代入2g(m)g(n)=g(m/2)+g(n/2),得:[g(m)-g(n)]^2=0,即g(m)=g(n)对于任意m、n不为零时成立,
亦即函数g(x)为常数函数,
注意到g(x)不能恒为零(否则f(x)将恒为零)且非负,即g(x)>0,
而若存在x使得g(x)>1,则g(x/2)=[g(x)]^2>g(x),即g(x)不为常数函数,与之前结论
矛盾!
而若存在x使得0
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点