设f(x)在(-∞,+∞)内有定义,证明:f(x)+f(-x)为偶函数,而f(x)-f(-x)为奇函数.
题目
设f(x)在(-∞,+∞)内有定义,证明:f(x)+f(-x)为偶函数,而f(x)-f(-x)为奇函数.
答案
证明:设g(x)=f(x)+f(-x),h(x)=f(x)-f(-x)
则 任取x∈(-∞,+∞),
g(-x)=f(-x)+f[-(-x)]=g(x)
h(-x)=f(-x)-f[-(-x)]=f(-x)-f(x)=-h(x)
所以 g(x)是偶函数,h(x)是奇函数.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点