求值:cos(π/11)cos(2π/11)cos(3π/11)cos(4π/11)cos(5π/11)
题目
求值:cos(π/11)cos(2π/11)cos(3π/11)cos(4π/11)cos(5π/11)
答案
cos(π/11)cos(2π/11)cos(3π/11)cos(4π/11)cos(5π/11)
=[2sin(π/11)cos(π/11)cos(2π/11)cos(3π/11)cos(4π/11)cos(5π/11)]/2sin(π/11)
=[sin(2π/11)cos(2π/11)cos(3π/11)cos(4π/11)cos(5π/11)]/2sin(π/11)
=[sin(4π/11)cos(3π/11)cos(4π/11)cos(5π/11)]/4sin(π/11)
=[sin(8π/11)cos(3π/11)cos(5π/11)]/8sin(π/11)
=[sin(3π/11)cos(3π/11)cos(5π/11)]/8sin(π/11)
=[sin(6π/11)cos(5π/11)]/16sin(π/11)
=[sin(5π/11)cos(5π/11)]/16sin(π/11)
=sin(10π/11)]/32sin(π/11)
=1/32
关键在于知道如何使用sin2x=2SinxCosx.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点