若对于抛物线y=1/4x^2上任意一点Q,点p(0,a)都满足/pQ/>=/a/,则a的取值范围为多少

若对于抛物线y=1/4x^2上任意一点Q,点p(0,a)都满足/pQ/>=/a/,则a的取值范围为多少

题目
若对于抛物线y=1/4x^2上任意一点Q,点p(0,a)都满足/pQ/>=/a/,则a的取值范围为多少
答案
设点Q( x , 1/4 x^2 ) ,其中 x∈R
∴│PQ│^2 = x^2 + ( 1/4 x^2 - │a│)^2
=1/16x^4 + ( 1 - 1/2 │a│)x^2 +a^2
由题意,有│PQ│^2≥a^2
∴1/16x^4 + ( 1 -1 /2 │a│)x^2≥0 对x∈R 恒成立
令t = x^2 ,t≥0
即1/16t^2 + ( 1 - 1/2 │a│)t≥0 对t≥0 恒成立
又 此二次函数的图像过原点
∴其对称轴在y轴左侧
即 -8( 1 - 1/2 │a│)≤0
│a│≤2
∴-2≤a≤2
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.