设A,B,C是三事件,且P(A)=P(B)=P(C)=1/4 P(AC)=(1/8)P(AB)=P(BC)=0,求A,B,C至少有一个发生的概率.
题目
设A,B,C是三事件,且P(A)=P(B)=P(C)=1/4 P(AC)=(1/8)P(AB)=P(BC)=0,求A,B,C至少有一个发生的概率.
答案
A,B,C至少有一个发生的概率为P(A∪B∪C).
根据容斥原理:P(A∪B∪C)=P(A)+P(B)+P(C)-〔P(AB)+P(BC)+P(CA)〕+P(ABC).
因为P(AB)=0,所以P(ABC)=0.
可得P(A∪B∪C) = 1/4 + 1/4 + 1/4 - 1/8 = 5/8.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点