如图,已知△ABC中,AB=AC=16厘米,BC=10厘米,点D为AB的中点. (1)如果点P在线段BC上以2厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动. ①若点Q的运动速
题目
如图,已知△ABC中,AB=AC=16厘米,BC=10厘米,点D为AB的中点.
(1)如果点P在线段BC上以2厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.
①若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由;
②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?
(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,求经过多长时间点P与点Q第一次在△ABC的哪条边上相遇?
答案
(1)∵AB=AC=16厘米,点D为AB的中点,
∴BD=8厘米,∠B=∠C,
①若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP全等,理由如下:
根据题意得:经过1秒时,BP=CQ=2厘米,
所以CP=10厘米-2厘米=8厘米,
即CP=BD=8厘米,
在△DBP和△PCQ中
∴△DBP≌△PCQ(SAS),
即若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP全等;
②设当点Q的运动速度为a厘米/秒时,时间是t秒,能够使△BPD与△CQP全等,
∵点Q的运动速度与点P的运动速度不相等,
∴BP和CQ不是对应边,
即BD=CQ,BP=CP,
即2t=10-2t,
解得:t=2,
∵BD=CQ,
∴8=2a,
解得:a=4,
即当点Q的运动速度为4厘米/秒时,时间是t秒,能够使△BPD与△CQP全等;
(2)设经过t秒时,P、Q第一次相遇,
∵P的速度是2厘米/秒,Q上午速度是4厘米/秒,
∴16+16+2t=4t,
解得:t=16,
此时Q走了4×16=64(厘米),
∵64-16-16-10-16=12,
即经过16秒后点P与点Q第一次在△ABC的边AB上相遇.
(1)①求出BD,求出CP,根据全等三角形的判定推出即可;
②根据全等求出时间t,再根据CQ=BD求出Q的速度即可;
(2)求出Q的运动路程,根据三角形ABC三边长度,即可得出答案.
全等三角形的判定;等腰三角形的性质.
本题考查了对全等三角形的判定定理的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,题目比较好,但是有一定的难度.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
- I ALSO THANK FOR YOU.MAYBE YOU THINK THAT I IS A FOOL 是啥意思?
- 破坏班级公物检讨书
- 求6.15*9.4-42的简算
- 某班有学生60人,会下象棋的人数是会下围棋人数的3倍,两种棋都会或都不会的人数都是10人,求只会下围棋有多
- 马哲辨析题:世界是物质的,物质是运动的,运动是有规律的,规律是可以把握的.
- 测量中用不同测图比例尺时作业中有什么不同?比如1:500和1:1000测法上有什么不同?
- 小华去乡下看奶奶,路上遇到一条小河,小河平均水深110厘米,小华身高130厘米,他能安全过河吗?
- 甲乙丙三个工人工作一批零件,甲做了总数的2/5,比乙多做了152个,乙与丙做的个数比是3:2,三人各做几个零
- 为什么燕子可以在电线杆上停留而不触电(作业,
- 当峰度系数大于0时,数据分布为___分布,速求啊.还有个就是什么又称为机会均等原则
热门考点