f(x)的反函数f^-1=log2(1+x)/(1-x),求f(x)的解析式和解不等式1-f(x)>1/(4^x-1)
题目
f(x)的反函数f^-1=log2(1+x)/(1-x),求f(x)的解析式和解不等式1-f(x)>1/(4^x-1)
答案
由f^-1=log2(1+x)/(1-x)可得
2^x=(1+y)/(1-y)
化简得
f(x)=(2^x-1)/(2^x+1)
1-(2^x-1)/(2^x+1)>1/(4^x-1)
等价于2/(2^x+1)>1/(2^x+1)(2^x-1)
2^x+1>0,则(2^x-3/2)/(2^x-1)>0
即2^x>3/2或0小于2^x小于1
则解集为{x/x>log2(3/2)或x小于0}
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点