1 函数f(x)=lnx-x+2的零点个数为( )
题目
1 函数f(x)=lnx-x+2的零点个数为( )
2 证明方程x的四次方-4x-2=0在区间〔-1,2〕内至少有两个实数解.
3 判定方程(x-2)(x-5)=1有两个相异的实数解,且一个大于5,一个小于2.
答案
(1)零点个数为一个
令f(x)=0
则方程可化为lnx=x-2
其实就是找y=lnx和y=x-2 两个函数图像的交点,一画图像便知
(2)在区间〔-1,2〕内作出y=x的四次方和y=4x+2的函数图像,交点即为解
(3)展开成一元二次方程的一般形式,利用判别式大于零,说明有两相异实根,利用求根公式求出两根再判断
或仿照前两问的解法,看图像y=x的平方和y=7x-9的交点
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点