线性代数:若n阶矩阵A满足方程A^2+2A+3E=0,则(A-2E)^-1=?

线性代数:若n阶矩阵A满足方程A^2+2A+3E=0,则(A-2E)^-1=?

题目
线性代数:若n阶矩阵A满足方程A^2+2A+3E=0,则(A-2E)^-1=?
答案
A^2 + 2A + 3E=(A - 2E )( A + 4E) + 11E = 0即 (A - 2E )( A + 4E) = -11E 所以 (A-2E)^(-1)= -1/11 ( A + 4E) 另外再说句,做这种题的技巧,就是配凑法,配成 要求因式 × 另一因式 = x E (该式化简后是原方程...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.