若抛物线y=2x^2-x+c,对任意实数x都有f(3+x)=f(1-x),那么 A f2<f1<f4 B f1<f2<f4

若抛物线y=2x^2-x+c,对任意实数x都有f(3+x)=f(1-x),那么 A f2<f1<f4 B f1<f2<f4

题目
若抛物线y=2x^2-x+c,对任意实数x都有f(3+x)=f(1-x),那么 A f2<f1<f4 B f1<f2<f4
C f2<f4<f1 D f4<f2<f1
答案
取x=0,有f(3)=f(1),所以抛物线是以x=2为对称轴的开口向上的抛物线
当x≥2时,为递增函数
又有f(3)=f(1),
所以f4>f3>f2 即f4>f1>f2
选A
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.