定积分∫0,1 x / (1+x^4)dx为什么等于[1/2arctanx^2]0-1?
题目
定积分∫0,1 x / (1+x^4)dx为什么等于[1/2arctanx^2]0-1?
答案
原式=1/2∫0,1 1 / [1+(x^2)^2dx^2
=1/2*arctan(1+x^2) 0,1
=1/2*arctan2-1/2*arctan1
=1/2*arctan2-π/8
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点