二元一次方程的数学题
题目
二元一次方程的数学题
某通讯器材商店,计划用6万元从厂家购进若干部手机,已知该厂家生产三种不同型号的手机,甲型号手机1800元一部,乙型号手机600元一部,丙型号手机1200元一部.
(1)若商场同时购进两种不同型号的手机共40部,并恰好将钱用完,请通过计算分析进货方案.
(2)在(1)的条件下,假如甲型号手机每部可赚200元,乙型号手机每部可赚100元,丙型号手机每部可赚120元,求盈利最多的进货方案.
切记,用二元一次方程组解!
答案
(1)从三种型号手机中购进两种不同型号共40部,有三种方法,即甲乙、乙丙、甲丙.
分别讨论如下:
第一种方法:设购买甲种X1部,购买乙种Y1部.
由题意可得方程组:{1800X1+600Y1=60000
X1+Y1=40
解得:X1=30,Y1=10,检验符合题目要求.
第二种方法:设购买乙种手机X2部,购买丙种手机Y2部.
由题意可得方程组:600X2+1200Y2=60000
X2+Y2=40
解得:X2=-20,Y2=60,显然不符合题目要求.(因为购买手机数目不能为负)
第三种方法:设购买甲种手机X3部,购买丙种手机Y3部.
由题意可得方程组:1800X3+1200Y3=60000
X3+Y3=40
解得:X3=20,Y3=20,检验符合题目要求.
由以上可知,有两种不同的进货方案,即购买甲种手机30部,乙种手机10部,或购买甲种手机20部,丙种手机20部.
(2)若采用购买甲种手机30部,乙种手机10部这种方案,由题意可盈利:
200×30+100×10=7000(元)
若采用购买甲种手机20部,丙种手机20部这种方案,由题意可盈利:
200×20+120×20=6400(元)
由于6400<7000
所以用购买甲种手机30部,乙种手机10这种方案盈利最多.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
- 为人谋而不忠乎的而是什么意思?
- 河里有鹅鸭若干只,其中鸭的只数是鹅的只数的4倍.又知鸭比鹅多27只,鹅和鸭各多少只?
- 如图 已知ab平行cd,角B平行角D,AD与BE平行吗
- 偏旁为木和神的字
- 飞屋环游记英语9-10句话概括主要内容
- Can I help you 和can you help me区别在哪?
- 数列{an}的通项an=n2(cos2(n派/3)-sin(2n派/3),其前n项和为Sn
- 酿酒缸缸好,做醋坛坛酸;养猪大如山,老鼠头头死.改或加标点符号使句子意思完全改变.
- 已知a,b,c为三角形ABC的三边长,试化简:|a-b-c|+|a+c-b|
- 若xy / (x+y)=1,xz / (x+z)=3,yz / (y+z)=2,求x的值
热门考点