解线性方程组{2X1+X2-2X3-2X4=0 X1+2X2+2X3+X4=0 X1-X2-4X3-3X4=0
题目
解线性方程组{2X1+X2-2X3-2X4=0 X1+2X2+2X3+X4=0 X1-X2-4X3-3X4=0
解线性方程组{2X1+X2-2X3-2X4=0
X1+2X2+2X3+X4=0
X1-X2-4X3-3X4=0
答案
系数矩阵A=2 1 -2 -21 2 2 11 -1 -4 -3r1-2r3,r2-r30 3 6 40 3 6 41 -1 -4 -3r1-r2,r2*(1/3),r3+r20 0 0 00 1 2 4/31 0 -2 -5/3r1r31 0 -2 -5/30 1 2 4/30 0 0 0所以方程组的通解为 c1(2,-2,1,0)^T+c2(5,-4,0,3)^T...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点