已知数列{an}的前n项和Sn=-n^2+18n,求证:{an}为等差数列

已知数列{an}的前n项和Sn=-n^2+18n,求证:{an}为等差数列

题目
已知数列{an}的前n项和Sn=-n^2+18n,求证:{an}为等差数列
答案
a1=S1=-1+18=17
当n>=2时:
an=Sn-S(n-1)=(-n^2+18n)-[-(n-1)^2+18(n-1)]
=-n^2+18n-[-n^2+2n-1+18n-18]
=-2n+19
a1=1也符合上式.
所以,d=an-a(n-1)=-2.(为定值)
所以,{an}为等差数列
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.