如图所示,已知D是等腰三角形ABC底边BC上的一点,点E,F分别在AC,AB上,且DE∥AB,DF∥AC.求证:DE+DF=AB.
题目
如图所示,已知D是等腰三角形ABC底边BC上的一点,点E,F分别在AC,AB上,且DE∥AB,DF∥AC.求证:DE+DF=AB.
答案
证明:∵DE∥AB,DF∥AC,
∴四边形AEDF是平行四边形,
∴DF=AE,
又∵DE∥AB,
∴∠B=∠EDC,
又∵AB=AC,
∴∠B=∠C,
∴∠C=∠EDC,
∴DE=CE,
∴DF+DE=AE+CE=AC=AB.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
- 指出下列各酸(碱)的共轭碱(酸): Ac- , NH3 ,HCO3-
- 英语作文改错,请帮我看看这篇作文有没有什么错误.
- 这句话怎么办?其中which 可不可以用that 替代?
- 如图,已知在△ABC中,D是BC的中点,DE⊥AB ,DF⊥AC,垂足分别是E、F,且DE=DF,试说明△ABC是等腰三角形.
- 《笑声》作文怎么写?
- a/3与3/2a-9的倒数之和等于2a,那么a的值是?
- winter in my heart的中文意思是什么?
- 有趣英文单词
- 笑笑是集邮爱好者他收集的动物邮票占他的邮票总数的45%人物邮票占百分之二十五,这些一共280张,一共多少张
- What do you think___(do) to save his life already
热门考点
- 有eats her lunch 的说法,见新概念英语第一册55课.
- 设f(x),g(x)不全为零,证明(f(x),g(x)+f(x))=(g(x),g(x)-f(x))
- This person is being taught in a shool.p_ _ _ _ 该怎么填
- s=1/2gt平方怎么变成了vt=√2gs
- sinA+sin(150度-A)=2sin75度cos(75度-A)是根据的?谢谢了,大神帮忙啊
- 初一数学题(平面直角坐标系)
- 请问圆柱体的体积计算公式?
- 铜枝铁干词的意思?
- 已知二次函数y=ax2+bx+c,当X=0时Y=4时;当X=1,Y=9时,当X=2,Y=18时,求这个二次函数
- 当a等于什么时,a的二次方和2a相等