椭圆x^2/4+y^2=1上的点到直线2x-4y-5=0的距离的最大值

椭圆x^2/4+y^2=1上的点到直线2x-4y-5=0的距离的最大值

题目
椭圆x^2/4+y^2=1上的点到直线2x-4y-5=0的距离的最大值
答案
平移直线2x-4y-5=0形成与直线2x-4y-5=0平行的直线束,与椭圆相切的两条平行直线与原来直线的距离分别为最小距离和最大距离
设形成的平行直线为2x-4y+c=0,联立椭圆和直线方程
x^2/4+y^2=1
x^2/4+[(2x+c)/4]^2=1
整理该方程
8x^2+4cx+c^2-16=0
Δ=16c^2-32(c^2-16)=0,所以c=±1
那么与原来直线平行的两直线方程为2x-4y±1=0
两平行直线的距离为
|±1+5|/根号下(2^2+4^2)=|±1+5|/2√5
所以最大距离为6/2√5=(3√5)/5
最小距离为4/2√5=(2√5)/5
距离的最大值=(3√5)/5
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.