已知二次函数f(x)=ax2+bx+c满足条件f(-1)=0,当x∈R时,x≤f(x)≤(x+1)/4恒成立.求f(x)的解析式

已知二次函数f(x)=ax2+bx+c满足条件f(-1)=0,当x∈R时,x≤f(x)≤(x+1)/4恒成立.求f(x)的解析式

题目
已知二次函数f(x)=ax2+bx+c满足条件f(-1)=0,当x∈R时,x≤f(x)≤(x+1)/4恒成立.求f(x)的解析式
答案
需三个方程,已知f(-1)=0是一个.由f(x)>=x得ax^2+(b-1)x+c〉=0,因为包含等于0的点,因而只有一解(画图观察可得),得(b-1)^2-4ac=0这是第二个方程.再由f(x)
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.