如图,△ABC和△ADE都是等腰直角三角形,CE与BD相交于点M,BD交AC于点N. 证明:(1)BD=CE;(2)BD⊥CE.
题目
如图,△ABC和△ADE都是等腰直角三角形,CE与BD相交于点M,BD交AC于点N.
证明:(1)BD=CE;(2)BD⊥CE.
答案
证明:(1)∵∠BAC=∠DAE=90°
∴∠BAC+∠CAD=∠DAE+∠CAD
即∠CAE=∠BAD
在△ABD和△ACE中
∴△ABD≌△ACE(SAS)
∴BD=CE
(2)∵△ABD≌△ACE
∴∠ABN=∠ACE
∵∠ANB=∠CND
∴∠ABN+∠ANB=∠CND+∠NCE=90°
∴∠CMN=90°
即BD⊥CE.
(1)要证明BD=CE,只要证明△ABD≌△ACE即可,两三角形中,已知的条件有AD=AE,AB=AC,那么只要再得出两对应边的夹角相等即可得出三角形全等的结论.我们发现∠BAD和∠EAC都是90°加上一个
∠CAD,因此∠CAE=∠BAD.由此构成了两三角形全等中的(SAS)因此两三角形全等.
(2)要证BD⊥CE,只要证明∠BMC是个直角就行了.由(1)得出的全等三角形我们可知:
∠ABN=∠ACE,三角形ABC中,∠ABN+∠CBN+∠BCN=90°,根据上面的相等角,我们可得出∠ACE+∠CBN+∠BCN=90°,即∠ABN+∠ACE=90°,因此∠BMC就是直角了.
全等三角形的判定与性质;等腰直角三角形.
本题考查了等腰直角三角形的性质,全等三角形的判定等知识点,利用全等三角形得出线段相等和角相等是解题的关键.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
- 一个三位数,他的个位数字是a,十位数字是个位数字的3倍少1,百位数字比个位数字大5,根据题目条件思考
- 张海迪的人生道路告诉我们什么道理
- 已知椭圆C:x^2/a^2+y^2/b^2=1(a>b>0)的离心率为√6/3,短轴的一个端点到右焦点的距离为3.1,求C的方程
- 请你结合生活实际,谈谈你对这句话的理解.
- 有一个题是:当左手被针扎感到疼痛到用右手把针拿掉的过程是:左手感受器→传入神经→脊髓灰质→脊髓白质→大脑皮层躯体感觉中枢→大脑皮层躯体运动中枢→脊髓白质→【脊髓灰质】→传出神经→右手肌肉.
- 设函数f(x)=|x-1|3-2|x-1|的四个零点分别为x1、x2、x3、x4,则f(x1+x2+x3+x4)=_.
- 解不等式
- 红磷燃烧测定空气中氧气含量的原理
- 把99拆成4个数,第一个数加二,第二个数减二,第三个数乘二,第四个数除二,得到的结果相等,应该怎样拆
- 求解一道微分方程.
热门考点