A为n阶非奇异矩阵,B为n*m矩阵,证明r(AB)=r(A)
题目
A为n阶非奇异矩阵,B为n*m矩阵,证明r(AB)=r(A)
我已经知道r(AB)=r(B)和r(A)=n然后就不会了.
答案
这是个错误结论
试想,B 是零矩阵,怎么会有 R(AB) = R(A) !
可逆矩阵才不改变乘积矩阵的秩
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点