已知:如图,D是△ABC的边AB上一点,CN∥AB,DN交AC于点M,MA=MC. ①求证:AD=CN; ②若∠BAN=90度,求证:四边形ADCN是矩形.
题目
已知:如图,D是△ABC的边AB上一点,CN∥AB,DN交AC于点M,MA=MC.
①求证:AD=CN;
②若∠BAN=90度,求证:四边形ADCN是矩形.
答案
证明:①∵CN∥AB,
∴∠DAC=∠NCA,
在△AMD和△CMN中,
∵
,
∴△AMD≌△CMN(ASA),
∴AD=CN,
又∵AD∥CN,
∴四边形ADCN是平行四边形,
∴AD=CN;
②∵∠BAN=90度,四边形ADCN是平行四边形,
∴四边形ADCN是矩形.
①根据两直线平行,内错角相等求出∠DAC=∠NCA,然后利用“角边角”证明△AMD和△CMN全等,根据全等三角形对应边相等可得AD=CN,然后判定四边形ADCN是平行四边形,再根据平行四边形的对边相等即可得证;
②利用有一个角是直角的平行四边形是矩形直接判断即可.
矩形的判定;全等三角形的判定与性质.
本题考查了矩形的判定,平行四边形的判定与性质,全等三角形的判定与性质,熟练掌握平行四边形与矩形之间的关系,并由第一问求出四边形ADCN是平行四边形是解题的关键.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点