已知:如图,在梯形ABCD中,AD∥BC,AB=DC,点E、F分别在AB、DC上,且BE=2EA,CF=2FD.求证:∠BEC=∠CFB.

已知:如图,在梯形ABCD中,AD∥BC,AB=DC,点E、F分别在AB、DC上,且BE=2EA,CF=2FD.求证:∠BEC=∠CFB.

题目
已知:如图,在梯形ABCD中,AD∥BC,AB=DC,点E、F分别在AB、DC上,且BE=2EA,CF=2FD.求证:∠BEC=∠CFB.
答案
证明:在梯形ABCD中,
∵AD∥BC,AB=DC,
∴∠ABC=∠DCB(等腰梯形在同一底上的两个角相等),
∵BE=2EA,CF=2FD,
∴BE=
2
3
AB,CF=
2
3
DC,
∴BE=CF,
在△EBC和△FCB中,
BE=CF
∠EBC=∠FCB
BC=CB

∴△EBC≌△FCB,
∴∠BEC=∠CFB.
要证明两个角相等,根据已知条件显然可以根据全等三角形的性质进行证明.首先根据等腰梯形的性质得到两个底角相等,再根据已知条件得到线段相等,即可证明△EBC≌△FCB.

梯形;全等三角形的判定与性质.

本题考查了等腰梯形的性质,此题要求学生熟练运用等腰梯形的性质以及全等三角形的判定和性质.

举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.